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Abstract

A multi-layered model for frictionless contact analysis of functionally graded materials (FGMs) with arbitrarily
varying elastic modulus under plane strain-state deformation has been developed. Based on the fact that an arbitrary
curve can be approached by a series of continuous but piecewise linear curves, the FGM is divided into several sub-
layers and in each sub-layers the shear modulus is assumed to be linear function while the Poisson’s ratio is assumed
to be a constant. With the model, the frictionless contact problem of a functionally graded coated half-space is inves-
tigated. By using the transfer matrix method and Fourier integral transform technique, the problem is reduced to a
Cauchy singular integral equation. The contact pressure, contact region and indentation are calculated for various
indenters by solving the equations numerically.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMS) consist of a gradual change in the volume fraction of constitu-
ents from one location to the other in a component. Used as coatings and interfacial zones they tend to
reduce stresses resulting from material property mismatch, increase the bonding strength, improve the
surface properties and provide protection against adverse thermal and chemical environment. Thus the
concept provides the materials scientists and engineers with an important tool to design new materials
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Nomenclature

a, b length of contact region

ho thickness of the coating

m slope of the triangular or wedge-shaped stamp

N total number of sub-layers

P applied normal load

P, dimensionless normal load for a cylindrical stamp, P/uohq

P, dimensionless normal load for a triangular stamp, P/uomhq

P dimensionless normal load for a wedge-shaped stamp, P/uomhy

w
p(x) normal contact pressure
pi(x)  dimensionless contact pressure for a flat stamp, p(x)/(P/2a)
p0)  minimum dimensionless contact pressure for a flat stamp at x =0
px)  dimensionless contact pressure for a cylindrical stamp, p(x)/uo
pix)  dimensionless contact pressure for a triangular stamp, p(x)/uom
pw(x)  dimensionless contact pressure for a wedge-shaped stamp, p(x)/uom

R radius of a cylindrical stamp

I shear modulus at the sub-interfaces, i=1,2...,N
Uo shear modulus at the surface of the coating

u* shear modulus of the homogeneous half-space

v Poisson’s ratio

do maximum indentation depth

for some special applications, for example, in aerospace, automobile, biomedicine, nuclear energy, gas
turbine engine and many other fields. Extensive technical literatures can be found concerning the thermal
stress analysis and fracture mechanics of FGMs (cf. Suresh and Mortensen, 1998).

In the past few years, some researchers began to pay attention to contact problem of functionally graded
materials (FGMs). The axisymmetric problems of graded half-spaces subjected to a concentrated load or to
flat, spherical and conical indenters were considered by Giannakopoulos and Suresh (1997a,b). The elastic
modulus is assumed to vary in depth direction in the manner of a power function or an exponential func-
tion. In these studies, it was demonstrated that appropriate gradual variation of the elastic modulus could
significantly alter the stresses around the indenter and lead to suppression of Hertzian cracking at the edge
of the contact region. Later, Suresh et al. (1999), Pender and Thompson (2001), and Pender et al. (2001)
draw the same conclusion. Suresh et al. (1997), Jorgensen et al. (1998) and Krumova et al. (2001) also pre-
sented the theoretical and experimental investigations of indentation testing methods to characterize the
local properties of FGMs such as the elastic modulus, yield strength, strain hardening exponent, hardness
and fracture toughness. Giannakopoulos and Pallot (2000) presented the closed form analytical solutions
for two-dimension contact of rigid cylinders on elastic substrates which have elastic modulus varying with a
power function. Edrogan and his coworkers (e.g., Dag and Erdogan, 2002; Guler and Erdogan, 2004) have
developed a model where the material properties vary as exponential functions and solve the contact and
coupled crack/contact problems of functionally graded coatings. It is worth mentioning the review article
by Suresh (2001) on graded materials for resistance to contact deformation and damage. It was summarized
that controlled gradients in mechanical properties offer opportunities for the design of surfaces with resis-
tance to contact deformation and damage that cannot be realized in conventional homogeneous materials.

It should be noted that all those models of FGMs mentioned before assume the power function (cf.
Plevako, 1973) or exponential function (cf. references cited above) of the material properties. Although
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the well-known piecewise multi-layered model can simulate FGMs with arbitrarily varying properties, it
introduces discontinuities of the material properties at the sub-interfaces. To overcome this disadvantage,
Wang and Gross (2000) recently suggested a multi-layered model for FGMs which allows arbitrarily
variation of the material properties and studied the static and dynamic crack problems under the anti-plane
deformation. Based on the fact that an arbitrary curve can be approached by a series of continuous but
piecewise linear curves, this model divides the FGM into a series of sub-layers with elastic modulus varying
linearly in each sub-layers and continuous on the sub-interfaces. Wang et al. (2003, 2004) and Huang et al.
(2003, 2004) presented detailed calculations for crack problems under both plane and anti-plane deforma-
tions to demonstrate the advantages of the model. In this paper, we will extend this model to the frictionless
contact problem of a functionally graded coated half-space under plane strain-state deformation.

2. Fundamental solutions to a functionally graded coated half-space
2.1. Modelling of FGMs

Consider the problem shown in Fig. 1. A normal concentrated line force P acts at the surface of a func-
tionally graded coated half-space. The half-space is homogeneous with the shear modulus p* and Poisson’s
ratio v*. Generally the shear modulus and Poisson’s ratio of the functionally graded coating may be de-
scribed by two arbitrary continuous functions of y, u(y) and v(y), with boundary values pu(/g) = 1o and
v(hg) = vo. In the present paper, we assume that the Poisson’s ratios for both coating and half-space are
a constant with the same value, that is, v(y) = v, =v* 2 v. Considering the fact that an arbitrary curve
can be approximated by a series of continuous but piecewise linear function, we develop a multi-layered
model as shown in Fig. 2. In this model, the functionally graded coating is divided into N sub-layers.
The shear modulus varies linearly in each sub-layers and is continuous at the sub-interfaces, i.e.,

/’t(y)%u](y):ﬁj(aj+bjy)7 hj<y<hjf17 j:1727"'7N7 (1)

where 7i; is equal to the real value of the shear modulus at the sub-interfaces, y = #;, i.e., i, = w;(h;) =
u(h;), which leads to
hiy — il 1

a=——7T";"", b]'

/B
hi—y — h; ’

hj-1 — h;

lp

2)

FGM coating L) ho

Homogeneous half-space

Fig. 1. A functionally graded coated half space subjected to a concentrated force P.
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Surface
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Fig. 2. The multi-layered model for the functionally graded coating.
2.2. Transfer matrix and displacement fundamental solutions

We consider the plane stain state of which the Hooke’s law in each sub-layer is
1—v v
Exxj = 2—/11 (Uxxj - m"m)’

1—v \J
bxyj = T (O'm - maxxj)v (3)

1
nyj = O-X,W"
K

where j=1,2,...,N. The equation of strain compatibility is

02 0k, Oy
oxxj Wi D ixyj (4)

0  ox2  xdy’

Introduce Airy stress function Fjx,y) defined as

O*F, O*F, O°F;
Oxxj = WZJ? Oxyj = *mv Oyyj = axzj . (5)
Eq. (4), upon substitution of (3) and (5), yields
O*F; o'F, 'R, 2 0°F, 2 O'F, 247 OF, 2u} O*F;
LA T A e s B i B s B B N} (6)

ox* 2oyt W 9P o Xy w 9y? o 1—v ox?

where the prime indicates the differentiation with respect to y. Applying Fourier integral transform to (6)

with respect to x, we obtain
d'F; 282 &F, LG 2 &'F; 28 dF, 2b;  &F, L 2bjs° 7
dy* dy? " ai+by & a+by dy (a; —|—bjy)2 dy*  1-v (aj—kbjy)2
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where “~”" indicates the Fourier transform. Introduce the substitutes
& =2s(a;+bp)/by  Fy=0(E)5/2
Eq. (7) reduces to a Whittaker equation (Slater, 1960)

d'o, 2d%, (1 4\de, (4 1\dp, [1 1-7
+——F—z+5 R e e 0, =0,
d¢ g de 278 ae T\ 2g)dg e 2 )Y

J J

where y = /(1 —2v)/(2 — 2v). The solution of (9) can be written as (Slater, 1960)

@; =AW, 15(&) +ApW o 15(E) + ApWois(=E) +AuW . 15(=E),

5783

©)

(10)

where 4;; (/=1,2,3,4) are unknown coefficients; and W, ; s(+¢;) are Whittaker functions. Inserting Eq.

(10) into (8), we obtain the transformed Airy stress function in each sub-layer as

Fj = (ApW,15(8) +ApW 1 5(E) +ApW,1s(=E) + AW, 15(=¢5))E;/2
£ 430,(E) +A4p0(E) +430;(E)) + Ajn@u(E)).

(11)

From (5) and the strain—displacement relations, one may obtain the Fourier transforms of the displacement

and stress components which may be written as the matrix form
{8} =104 = [ThB), Te), T), Ts(){4;},
where
{87} = [y, iy, Gy G
{4} = Ujn A, A, A"
T3] = [T (), T (), T (), Tus )]

with
i(1—v) &’ s _
Tin(y) =— - — Pi1s
! 2u(y)s dy* - 2u(y)
1—v &¢, ab(—v)de, 2—vdp, b
lez(y) v q)jl _ :u’] ]( V) q)]l vV (p_/l lu] /v ~

T F 22008 A 2m() dy  2(n) "
. do; .
Ti(y) = —1Sd—;[a Tiu(y) = —SZ(P,-I, 1=1,2,3,4

and the superscript “T”” denoting transposition of matrix.
In the homogeneous half-space, the Airy stress functions satisfy the biharmonic equation

V*Fyi1 = 0.
Following the similar process, we get

{Svi1} = [Tva () {4n},

where {An41} = [An+1.1, Ay+12]" and

. . . ) T
s/2ip —|s|/2u —is =551 iy,

[T ()] = s +2(1 —v)|s|/s]/2ip" (1 =2v—yls|)/2u" —is(yls|+1) —s%y

(12)

(13)

(14)

(15)
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The stresses and displacements are continuous at the sub-interfaces, y = h;, which states

Oxyj — Oxyjrl = 01
Tyyj = Tyj1 = 0, (16)
Uyj — Uyjr1 = 07

Uy =ty =0
and along the coating surface, y = hy, we have

O—xy()(x; h()) = Oa

Gyo(x, ho) = —0(x)P. (17)

where J(-) is the delta function. In the transformed domain, the boundary conditions (16) and (17) may be
written as

{S;} —{Ss1} =0, y=h,, j=12,...,N, (18)
[Bl][Tl (h())]{Al} = {07 _P}T7 (19)
where
001 0
[B”:[o 0 0 1]'

The above Eqs. (18) and (19) is a recurrence relation which, upon substitution (12) and (14), may yield the
expression of {4} in terms of {0, P}",

{A/} = 7[Vj71HVNMK}7I{O7P}T7 ]: 1727"'aN7 (20)
where

Vi =) [T, )= WolNal - V], =1,

(K] = [Bi][T\(ho)][V'w], Vol = [Val.

Substituting (20) into (12) and taking the inverse Fourier transform, we have

1 [~ -
ot ] =5 [ M0, PY e, 21
where we have denoted
[M(s,)] = =[T;0) V) [VN]IK]

which is the transfer matrix of the multiple layered medium with the normal force. Extracting the displace-
ment components at y = h, from Eq. (21), we have

o] = 5 K " (s, o) 0, PY T ds, (22)
where
1 0 0 O
mis. ) = BIM s L, =) ).
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Considering the asymptotic behavior of Whittaker functions for large arguments (Slater, 1960), one may
easily prove

—i
lim sm(s, hy) = {_al 062:|7 (23)
§——+00 10 o
where
v—1 2v—1
o« = ) a0 = .
Ho 2
Rewrite Eq. (22) as
T 1 > T Lisx 1 > T Lisx
[0, ty0] == A{0,P} e ds + — [m(s, ho) — AJ{0, P} e**ds, (24)
2n ) o 2n ) o
where
A 1 [sign(s)ozl —ioy }
s i, sign(s)oy |
If we consider the following properties of the elements of the matrix m(s):
mi/(_s) = (_1>i+jmii(s)7 i,j=12 (25)
and use the relations
/ cos(sx) ds = — In|x], / sin(sx) ds= " sign(x), (26)
0 N 0 S 2
we can obtain the surface displacement components from Eq. (22)
P . P [ .
Uy (x) = OCZT sign(x) + p / [imy2(s) — an/s] sin(sx) ds, (27)
0
P P [~
o (x) = _“1? In x| + / [ (s) — o /s] cos(sx) ds. (28)
0

It should be noted that the logarithmic singularity involved in the displacements makes the deformation
indeterminant (i.e., the surface cannot be used as reference for zero displacements, (cf. Johnson, 1985)). For
a homogeneous half-space without the functionally graded coating, the second terms including the integrals
in Eqgs. (27) and (28) vanish, and then we get the results presented in Johnson (1985).

3. Stamp problems for a functionally graded coated half-space

The previous section gives the fundamental solutions to a functionally graded coated half-space sub-
jected to a concentrated line load. We will show in this section how to use the fundamental solution (28)
to solve the contact problems of rigid stamps as shown in Fig. 3. This is a typical mixed boundary value
problems in which the displacement components are known through the given stamp profiles within the
contact region, —b < x < ¢4, and the surface traction is known to be zero outside the contact region. Sup-
pose the normal contact pressure is p(x), and then the superposition theorem gives the normal displacement
component of the surface

uy(x) = — % In|x — ¢|p(¢) de + % / p()I(x,)dz, (29)

—b b
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P
Rigid
stamp
— e
-b a
ho FGM
y
Homogeneous X
Half-space
Fig. 3. Geometry of the contact problem.
where
I(x,t) = / [ma(s) — oy /s] cos[s(x — t)]ds. (30)
0
Derivation of Eq. (29) with respect to x yields
o [ p) 1 / a
— ——dt+- t t)dt = 31
2 P ae L [ b0t = g 61
where
- auyo ()C)
glx) = “ox

O, 1) = 2L é’; H__ /0 " lsmn(s) — o] sin[s(x — £)] ds.

Eq. (31) is a Cauchy singular integral equation for the unknown contact pressure p(x), provided that the
stamp profile u,o(x) (—b < x <a) is prescribed. The static equilibrium for the contact pressure p(x) must
satisfy, which yields an additional condition for uniqueness of the solution

/ plt)di = P. (33)
—b
By introducing the following normalized quantities:

_a+b a—>b _a+b a—>b

t= —b<(t,x) <a, —1<(n,0)<l, (34)

y Tty Ty st
the Cauchy singular equation (31) and Eq. (33) may be expressed in the following form:

22 a2 ot dn = glo) (35)
| pman=2r/ta+), (36)

where we have simply denoted p(¢) = p(n), O(x,t) = Q(c,n) and g(x) = g(g) with consideration of Eq. (34).
These equations can be solved numerically by following the method developed by Erdogan and Gupta
(1972) or Krenk (1975). To this end, one should first examine the singular behavior of p(y) at n = %1
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(i.e., the ends of the contact region, —b and «a). Generally speaking, if the contact is smooth at one end, the
pressure at this end is zero; otherwise it has inverse square root singularity at this end. If both ends of the
contact region are smooth, a consistency condition should be considered (Muskhelishvili, 1953). This will
be discussed in the next section for particular examples.

4. Examples

A few typical stamp problems will be formulated in this section based on the previous analysis. Numer-
ical results and discussion will be presented in the next section.

4.1. Frictionless rigid flat stamp
Consider the contact problem for a FGM coated half-space shown in Fig. 4 where the stamp is flat, that is

d
uyo(x) = constant, u,éo_x(x) =0. (37)

In this case, we have
gc)=0, b=a (38)

Egs. (35) and (36), with consideration of Eq. (38), can be solved numerically by the method of Erdogan and
Gupta (1972). Notice that the function p(y) has integrable singularities at # = +1. We can express them as

pln) =L (39)

V1 =n?

and then Egs. (35) and (36) reduce to (Erdogan and Gupta, 1972)

1 M

3 20|+ alas,an)| 0. (40a)
=1 r

1 M

> r) = (40b)

LP

ho -a a )
FGM coating

Homogeneous
half-space

Fig. 4. Geometry of the flat stamp problem.
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where 1, = cos[(2] — 1)n/2M], ¢, = cos[nr/M], r =1,2,...,M — 1, and M is the total number of the discrete
points of f{n;) in (—1,1). Egs. (40a,b) provide a system of M equations to determine M unknowns,

S, finm)
4.2. Frictionless rigid cylindrical stamp

Consider the cylindrical stamp problem shown in Fig. 5 where the stamp profile is given by

Ouyo(x) x
— VR y2) = W) _
uy(x) = (R R —x ) o, PR~ et a<x<a, (41)

where R is the radius of the stamp; « is the semi-length of the contact region; and J, is the maximum inden-
tation depth appearing at x = 0. §, and « are undetermined. In the absence of adhesion, the analysis re-
quires the additional condition that the contact pressure must be zero at the ends of the contact region, i.e.,

p(:l:a) =0, (42>
therefore, the semi-length of the contact region, a, becomes a function of the applied normal line load P.

For the cylindrical stamp, we have

5 =———. b=a (43)
R — (ac)

It is noted that for the cylindrical stamp the solution of Egs. (35) and (36) must satisfy a consistency con-
dition (Muskhelishvili, 1953),

bS(o)de

i, (44)
1 yV/(1=¢%)
where
1
o
S(e) = —1/ —p(n)P dy.
T Jan—g¢
P
R
-a % _/a
h
’ y FGM coating
X

Homogeneous
Half-space

Fig. 5. Geometry of the cylindrical stamp problem.
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Referring to Erdogan and Gupta (1972), it is easily proved that Eq. (44) is an identity. Then, Egs. (35) and
(36), with consideration of Eq. (43), can be solved numerically by the method of Erdogan and Gupta
(1972). Expressed p(n) as

p(n) =fmv1—n% (45)

then Egs. (35) and (36) reduce to (Erdogan and Gupta, 1972)

% (l—n?)f(m)[ o ] as,

+aQ(G )| = 2 46
O e T e Ry (46a)
M 1—;7 P
Z l _&7 (46b)

=1

where n; = cos[ln/(M—i— D], ¢ =cos[n(2r — 1)/2(M + 1)], r =1,2,...,M + 1, and M is the total number of
the discrete points of f{i;) in (—1,1).

It is noted that there are M + 2 equations for M + 1 unknowns, f(111),...,fina) and a. As in Erdogan
and Gupta (1972), we choose M from M + 1 equations in (46a). In practice, we can select M as an even
integer and ignore the equation corresponding to r = M/2 + 1.

4.3. Frictionless rigid triangular stamp

Consider the triangular stamp problem shown in Fig. 6 where the stamp profile is given by

Ouyy
Uy (x) = mx +c, %(x) =m, m > 0. (47)

In this case, we have
gc)=m, b=0. (48)

Eqgs. (35) and (36), with consideration of Eq. (48), can be solved numerically by the method of Krenk
(1975). Notice that the triangular stamp has a sharp corner at x =0 and smooth contact at x =a. We
can expressed p(n) as

pn) =1 —n)/(1+n). (49)

ho a FGM coating

Homogeneous
half-space

Fig. 6. Geometry of the triangular stamp problem.
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Then Egs. (35) and (36) reduce to (Krenk, 1975)

M
> W) Lha% + gQ(cr, n)| =m, (50a)
=1 or
M
2
S oWl = a—:, (50b)

=1

where M is the total number of the discrete points of f{57;) in (—1,1); n;, g, and W' are, respectively, deter-
mined by

PeP) =0, 1=1,2,....M, -
PLrP(e) =0, 1=1,2,....M, (52)
(—o,—f)
W — o) F)r—o) P M*"j,ﬁ(m) ) .
T Pﬁ;‘/) (m)

where o = —f = 1/2; I'() is the Gamma function; and Pf\j'ﬁ )() is the Jacobi polynomial of degree M.
It is noted that one end of the contact region, namely « is unknown. However, Egs. (50a,b) provide
M + 1 equations to determine f(n,),...,f(ny) and a.

4.4. Frictionless rigid wedge-shaped stamp

Consider the wedge-shaped stamp problem shown in Fig. 7 where the stamp profile is given by

Ouyo(x)

e msign(x), —a <x < a. (54)

uy(x) = mxsign(x) + c,

In this case, we have
g(¢) = sign(¢)m, b=a. (55)

It is noted that g(g) presents a jump discontinuity at ¢ =0 (i.e., x = 0). Therefore, the method developed
Erdogan and Gupta (1972) and Krenk (1975) cannot be used directly to solve Egs. (35) and (36) in the pres-
ent case. Here we employ the method of Toakimidis (1980). Set

p(n) = h(n) +yn), (56)

ho y FGM coating
X
Homogeneous
half-space

\

Fig. 7. Geometry of the wedge-shaped stamp problem.
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where /(n) is an unknown function to be determined, and /(7) satisfies
1
o h(n)
2 [ an = (o (57)

of which the closed-form solution is given by

_m 1+\/1—11

hin) = — 58
0= (58)
Substitution of Eq (56) into Egs. (35) and (36) with consideration of Egs. (57) and (58) yields

R = F(2), (59)
-1 '1 -
/ ¥(n)dn = o, (60)
-1
where
a [
Fle)=~-— /lh(n)Q(c,n)dn,
P : P 2
w=t [ by =4 -2
a 1 a o

The numerical method of Erdogan and Gupta (1972) can be directly applied to the solution of Egs. (59) and
(60). Expressed /(1) as

w(n) =fmv1-n (61)
Then Egs. (59) and (60) reduce to (Erdogan and Gupta, 1972)

1= [ o
> G [ a0(e.n)| = (s (620)
- 1_’71 () To
> = (62b)

=1

where ;= cos[ln/(M—i— D], ¢, =cos [r(2r — D/2(M+1)],r=1,2,...,M+ 1, and M is the total number of
the discrete points of f{;) in (—1,1). As in the case of the cylindrical stamp, one can select M from M + 1
equations in (62a) and combine them with (62b) to get M + 1 unknowns, f(,) (/=1,2,..., M) and a.

5. Numerical results and discussion

To verify the effectiveness of the present model, we first consider the frictionless contact of rigid stamps,
by assuming the shear modulus of the coating varying in the exponential manner

u(y) = 'u*ei(y/ho)7 (63)

where 1 = log(uo/n”) and p* is the shear modulus of the homogeneous half-space. Throughout the paper the
Possion’s ratio is taken as v = 0.3. Guler and Erdogan (2004) have studied the contact of flat and triangular
stamps by taking the same form as Eq. (63) for the shear modulus of the coating. Here we solve the same
problem using the present model for comparison with Guler and Erdogan’s method. And in addition, the
cylindrical and wedge-shaped stamps are also considered here.
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For the use of the present model, we have to first determine how many sub-layers are necessary to obtain
the sufficiently accurate results. To this end, we calculate the minimum dimensionless contact pressure,
pi(0), of the flat stamp with u*/ug =8, a/hy = 0.1 and 0.5 for different values of N as shown in Table 1.
We can see that with the increase of N, the results are increasingly close to each other. And the results with
N =4 or 6 may be considered sufficiently accurate. So we could choose N = 6, that is, divide the coating
into six sub-layers.

In order to compare the present model to Guler and Erdogan’s, we choose the same materials param-
eters as in Guler and Erdogan (2004), and calculate the contact pressure for various kinds of stamps. Figs.
8-11 present the non-dimensioned contact pressure, i.e., px), p(x), p(x), pw(x), obtained by the present
model and Gular and Erdogan’s method for the flat, cylindrical, triangular and wedge-shaped stamps
for various values of the stiffness ratio u*/uy with the fixed value of a/hy, respectively. Among them the re-
sults for the flat and triangular stamps have been presented by Guler and Erdogan (2004). Good agreement
is shown between the results of the present model and those of Guler and Erdogan. It is noted that Guler
and Erdogan’s analysis only allows for exponential variation of the shear modulus, while ours has no such
limitation.

Some features may be observed from Figs. 8-11. For instance, the contact pressure has singularity at
both ends x = +a for the flat stamp (Fig. 8), but at one end x = 0 for the triangular stamp (Fig. 10). Also
singularity is seen near the tip x =0 of the wedge-shaped stamp (Fig. 11). However, smooth contact is
shown at both ends for the cylindrical (Fig. 9) and wedge-shaped (Fig. 11) stamps, and at one end for
the triangular stamp (Fig. 10). The singularity of the contact ends has been discussed in previous Section

Table 1
Effect of N on the minimum dimensionless contact pressure of the flat stamp with u*/uo =8, a/hy = 0.1 and 0.5
—-N a/ho = 01 a/ho = 05
{0) 0)
2 —0.71831 —0.80957
4 —0.70709 —0.81105
6 —0.70476 —0.81123
8 —0.70477 —0.81125
-0.5 0.0
1/8
% X KoK X x")(._
X X,
0.5 x ; X
.X X
p'(X) pf(x) 1 2 g o S . },1_.,11\. 3
-1.04 -104 p*/u0= 8
547
-1.5 T T T -2.0 ; : T T T T T ik
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.
(@) x/a (b) x/a

Fig. 8. The distribution of the contact pressure on the surface of FGM coating loaded by a flat stamp for various values of the stiffness
ratio u*/ug: (a) a/hy = 0.1 and (b) a/hy = 0.5. The lines are from the present results and the scattered symbols from Guler and Erdogan’s
results.
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Fig. 9. The distribution of the contact pressure on the surface of FGM coating loaded by a cylindrical stamp for various values of the
stiffness ratio /o, R/ho = 0.8: (a) a/hy = 0.1 and (b) a/hy = 0.3. The lines are from the present results and the scattered symbols from
Guler and Erdogan’s results.

0 0.0
14
2.5
p,(x)
2 p,(x)
5.0 ;
-3 {
754
4 B
- : i T v T v T T -10.0 E T T v T v T T T T
0.00 0.05 0.10 0.15 0.20 0.0 0.1 0.2 0.3 0.4 0.5
@ x/a (b) x/a

Fig. 10. The distribution of the contact pressure on the surface of FGM coating loaded by a triangular stamp for various values of the
stiffness ratio u*/uo: (a) a/hy = 0.2 and (b) a/hy = 0.5. The lines are from the present results and the scattered symbols from Guler and
Erdogan’s results.

4 for the four kinds of the stamps considered here. The numerical results demonstrate the analytical results
therein. The same singular behavior is also involved in contact of the homogeneous elastic solids.

Effects of the stiffness ratio u*/uy (or equivalently, the exponential index A) on the contact pressure are
shown obviously in Figs. 8-11 for the case of the fixed contact region (i.e., the value of a/hg). With the in-
crease of 1"/, the contact pressure for the flat stamp decreases and becomes more even in most part of the
contact area, but it increases in the area near two ends; while the contact pressure for the other three kinds
of stamps increases in all contact area and becomes more uneven. This behavior provides a way for us to
change the distribution of the contact pressure by adjusting the stiffness of the coating surface (or equiva-
lently adjusting the gradient of the coating).

As well known, indentation-testing methods can be used to characterize the local properties of FGMs
such as the elastic modulus, yield strength, strain hardening exponent, hardness and fracture toughness.
Therefore we calculate the contact region ¢ and the maximum indentation depth J, for the cylindrical
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Fig. 11. The distribution of the contact pressure on the surface of FGM coating loaded by a wedge-shaped stamp for various values of
the stiffness ratio u*/uo: (a) a/hy = 0.1 and (b) a/hy = 0.3. The lines are from the present results and the scattered symbols from Guler
and Erdogan’s results.

and wedge-shaped stamps. Throughout the paper the indentation is defined the vertical displacement with
respective to the value at x = 5h,. That is to say, the maximum indentation depth J, is difference between
the vertical displacements at x =0 and x = 5hy, i.e., 6o = uy(0) — u,0(5ho). The relations of P vs a and P
vs d¢ are shown in Figs. 12 and 13 for various values of the stiffness ratio u*/uo. For the cylindrical stamp,
the P.—a curves (Fig. 12a) are concave, while the P.—d, curves (Fig. 12b) are slight concave for smaller P,
but are almost straight for larger P.. For the wedge-shaped stamp, the P,—a curves (Fig. 13a) are concave
for pu* > uo but are convex for u* < py (and is straight for u* = p), while the Py—d, curves (Fig. 13b) are
concave for larger values of pu*/u but are almost straight for smaller values of u*/uy. Both Figs. 12 and
13 show that the larger applied normal load is needed for the stiffer coating surface than for the softer
one to create the same contact region (a) and the same maximum indentation depth J,. The dependence
of P-3, curves on the stiffness ratio u*/uy (or equivalently, the exponential index A) provides a way for
us to measure the stiffness of the coating surface and the gradient of the coating using the indentation-
testing method.

1.0 1.0
PC
0.5
0.0 — . T
0.0 0.1 0.2 0.3 0.4
(@) alh,

Fig. 12. The relations of P. vs a (a) and P, vs dy (b) for various values of the stiffness ratio x*/uo with R/hy = 0.8, the cylindrical stamp.
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Fig. 13. The relations of Py, vs a (a) and Py, vs &, (b) for various values of the stiffness ratio u*/u, the wedge-shaped stamp.

As mentioned before, one of the advantages of the present model over others is that it can be used for the
FGM with shear modulus varying arbitrarily and involves no discontinuity of the properties. As an exam-
ple, we consider the shear modulus of coating varying in the following form:

uy) ="+ (o = 1) (v/ho)". (64)
where 7 is a positive constant characterizing the gradual variation of the shear modulus. In the following
calculation we also choose the number of the sub-layers to be 6. Here we use the present model to solve
contact problems of flat, cylindrical and wedge-shaped stamps.

Figs. 14-16 illustrate the distributions of the contact pressure for some selected values of n with fixed
W/uo and a/hg. Significant effects of the shear modulus gradient (n) of coatings are observed especially
for the cylindrical (Fig. 15) and wedge-shaped (Fig. 16) stamps. With the increase of n, the contact pressure
for the flat stamp decreases in most part of the contact area but increases in the area near two ends; while
the contact pressure for the other two kinds of stamps increases in all contact area. This behavior implies
that we can alter the distribution of the contact pressure by adjusting the gradient of the coating while
remaining the stiffness of the coating surface unchanged.

05 05
p(x)
.04
"0 05 0.0 05 o 0 ' ' '
. 0. . . . 1.0 0.5 0.0 05 1.0
(a) x/a (b) x/a

Fig. 14. The distribution of the contact pressure on the surface of FGM coating loaded by a flat stamp for various values of n,
o =8: (a) a/h = 0.1 and (b) a/h = 0.5.
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Fig. 15. The distribution of the contact pressure on the surface of FGM coating loaded by a cylindrical stamp for various values of #,
R/h=0.8, u*/up=8: (a) a/h =0.1 and (b) a/h =0.3.
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Fig. 16. The distribution of the contact pressure on the surface of FGM coating loaded by a wedge-shaped stamp for various values of
n, W/uo = 8: (a) a/h =0.1 and (b) a/h =0.3.
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Fig. 17. The relations of P, vs a (a) and P, vs & (b) for various values of n, R/h = 0.8. u*/uo =8, the cylindrical stamp.
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Fig. 18. The relations of Py, vs a (a) and Py, vs & (b) for various values of n, u*/uy =8, the wedge-shaped stamp.

The force-contact region (P—a) and force-indentation (P—J,) relations are shown in Figs. 17 and 18 for
some selected values of n with fixed "/ and a/hy. All P—a and P-3, curves are concave. To create the same
contact region (a) and the same maximum indentation depth J,, the larger applied normal load is needed
for smaller values of n because the gradual variation of the shear modulus can significantly alter the pres-
sures around the stamp. The dependence of P-J, curves on the value of n indicates that we can measure the
gradient of the coating using the indentation-testing method even if the stiffness of the coating surface re-
main unchanged.

6. Concluding remarks

In the present paper, we have developed a multi-layered model for frictionless contact analysis of a func-
tionally graded coating under plane strain-state deformation. The essence of the model is the approxima-
tion of the functionally graded material properties by a continuous but piecewise linear variation. To check
the efficiency of the model, we have calculated the frictionless contact of the rigid flat, cylindrical, triangular
and wedge-shaped stamps and compared the results with those of Guler and Erdogan’s work. From the
numerical results, we can find:

(1) The present model allows for arbitrary variation of the material properties.

(2) The present model is very efficient in solving the contact problem of the FGMs. Generally 4-6 sub-
layers can yield sufficiently accurate results.

(3) The distribution of the contact pressure can be altered by adjusting the gradient of the coating.

(4) The dependence of force-indentation relations on the gradients indicates that we can measure the gra-
dient of the coating using the indentation-testing method.

Finally, we mention that the present work has many potential applications in geomechanics, biomechan-

ics, thin films, coatings, and other engineered materials. Also, the results of this study can be useful in inter-
preting experiments and potentially for the design of materials themselves.
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